Modul-Nummer	Titel des Moduls	Anzahl LP (nach ECTS):
MB 08515	Höhere Wärme- und Stoffübertragung	4

Modul-Typ	Verantwortliche/r für das Modul	Email / TelNr.
Wahlpflichtfach Master	Prof. DrIng. Stephan Kabelac	Kabelac@hsu-hh.de 040/6541-2735

Modulbeschreibung

1. Qualifikationsziele

Ziel dieses grundlagenorientierten Moduls ist ein erweitertes Verständnis der physikalischen Grundlagen der Wärme- und Stoffübertragung. Die Analogie zwischen einigen Mechanismen der Stoffübertragung und den teilweise schon bekannten Wärmeübergangsmechanismen soll erkannt und übertragen werden. Die Wärmeübertragung bei zweiphasiger Strömung, die in der Energie- und Umwelttechnik eine zentrale Rolle spielt, soll von den zugrundeliegenden Berechnungsansätzen verstanden und zur Anwendung bereitstehen. Die Wärmeübertragung durch Strahlung soll um die in der Verbrennung wichtigen Gasstrahlung erweitert werden.

2. Inhalte

Abgedeckte Themenfelder:

- 1. Konzentrationsfelder und konvektiver Stoffübergang
- 2. Analogie zwischen Wärme- und Stoffübertragung
- 3. Kondensatoren
- 4. Verdampfer
- 5. Stoffübergang bei Gemischen
- 6. Gasstrahlung

3. Modulbestandteile							
LV-Titel	LV-Art	TWS	LP	Pflicht (P)/ Wahl (W)/ Wahlpflicht (WP)	HT/FT/WT		
Höhere Wärme- und Stoffübertragung	V	2	4	Р	WT		
Höhere Wärme- und Stoffübertragung	Ü	1	4	Р	WT		

4. Beschreibung der Lehr- und Lernformen

Vorlesung mit Tafelanschrieb und Bildmaterial Hörsaal-Übung mit zusätzlichem Anschauungsmaterial Kommentierte Formelsammlung

5. Voraussetzungen für die Teilnahme

Es gibt keine formalen Voraussetzungen, wünschenswert sind Kenntnisse der höheren Thermodynamik, die parallel angeboten wird.

6. Verwendbarkeit

Das Modul "Höhere Wärmeübertragung" ist für den Master-Studiengang "Energie- und Umwelttechnik" ein Pflichtfach. Das Verständnis des Siedens und des Kondensierens ist die Energietechnik in mehreren der nachfolgenden Pflicht- und Vertiefungsfächer notwendig. Der Stoffübergang in fluiden Gemischen ist für die Umwelttechnik ausschlaggebend.

7. Arbeitsaufwand und Leistungspunkte							
Beispiel: Vorlesung 2 Std. + Seminar 1 Std. + Übung 2 Std.	Wochen	Std./Woche	Std. insge- samt	LP			
Vorlesung	12	2	24				
Übung	12	1	12				
Vor- und Nachbereitung der Lehrveranstaltung	12	4	48				
Prüfungsvorbereitung	2	18	36				
			120	4			

8. Prüfung und Benotung des Moduls

Schriftliche Klausur (2 h)

9. Dauer des Moduls

ein Trimester

10. Teilnehmer(innen)zahl

unbegrenzt

11. Anmeldeformalitäten

Anmeldung zur Prüfung entsprechend der Studienordnung

12. Literaturhinweise, Skripte

Skript in Papierform im Sekretariat H11 R 127 erhältlich

Literaturangaben:

Baehr/Stephan Wärme- und Stoffübertragung, 4. Aufl. Berlin: Springer-Verl. 2005 VDI-Wärmeatlas (Hrg.: VDI_GVC Gesellschaft), 10. Aufl. Berlin: Springer-Verl., 2006. Taylor, R./Krishna, R.: Multicomponent Mass TransferNew York: Wiley & Sons 1993 Bird,R./Stewart, W./Lightfoot, E.: Transport Phenomena. New York: Wiley, 1960 Bejan, A: Convection heat transfer, 2nd. Ed. New York: Wiley & Sons, 1995

Schlünder, E.-U.: Einführung in die Stoffübertragung. Wiesbaden: Vieweg-Verl., 1996

13. Sonstiges